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Abstract. We study the sensitivity of an asymmetric B-factory to indirect CPT violating effects. We find
that both dilepton signals and nonleptonic asymmetries can be used to bound the space of parameters
describing possible CPT violation in the mixing matrix of the neutral B system.

I Introduction

Invariance under CPT transforms is an exact property of
a relativistic, local and renormalizable field theory, satis-
fying causality and invariance under proper Lorentz trans-
formations, incorporating usual spin-statistic relations and
provided with asymptotic states [1]. Therefore, tests of
CPT invariance probe fundamental aspects of the cur-
rent field-theoretical description of microscopic phenom-
ena, and provide stringent constraints on quantum gravity,
supergravity and superstring-inspired scenarios requiring
a violation of CPT [2].

CPT symmetry, which implies the equality of mass,
lifetime, branching ratios of particles and antiparticles,
was tested at various levels of accuracy since the early
days of the high-energy physics era [3]. The main activity
was focused on the theoretical and experimental analysis
of the neutral kaon system, where it was observed that the
phases φ+−, φ00 and φSW are equal within an accuracy
of 1◦ [4]. At Φ-factories, where 8.9 × 109 KL − KS pairs
per year will be produced, tests of even higher accuracy
are expected to be performed in the near future [5].

Tests of CPT invariance have been proposed for the
neutral D meson system [6]. Moreover, the symmetric and
asymmetric B-factories currently under construction [7–
9] represent experimental facilities where CPT symmetry
can be investigated in the neutral B system. In this case,
information is used from Υ (4S) decays to coherent C-odd
B0-B̄0 states (C-even states, e.g. from Υ (4S) → B0B̄0γ,
are expected at the level of 1/109 events [10]) so that clear
CPT tests, in addition to CP measurements, can be car-
ried out.

The proposal of using the neutral B system for testing
CPT was already put forward in [11,12]. In particular, in
[12] the features of symmetric and asymmetric B-factories
were considered in order to put bounds to possible viola-
tions of CPT , mainly using the channel where one neu-
tral B meson decays via a semileptonic transition, and
the other one decays to J/ψKS ; Monte Carlo simulations
were used to study the sensitivity to this process in vari-

ous experimental environments. In this paper we want to
reconsider the problem. In particular, we investigate the
feasibility of bounding CPT invariance in the neutral B
system at an asymmetric B-factory using not only non-
leptonic decay channels, but also the decay modes where
both the neutral B mesons decay via a semileptonic tran-
sition, since a high statistics is expected in this case, with
limited reconstruction and background rejection difficul-
ties. We introduce a CPT violating term in the mixing
matrix of neutral B mesons, according to the notation in
[11], and then we consider the case where lepton pairs are
identified in semileptonic B0 and B̄0 decays.

We also consider the decay channel B → J/ψKS and
report on the sensitivity to different decay modes, such as
B → D+D− and B → D∗+D∗−.

Our conclusion is that it is possible to sensibly con-
strain the parameter space of CPT violating effects in the
neutral B mixing matrix. The future B-factories, there-
fore, represent powerful facilities for probing a fundamen-
tal aspect of the field theoretical description of the ele-
mentary interactions.

II Parameterizing CPT violation
in the B0 − B̄0 mixing matrix

In the Wigner-Weisskopf approach, the mixing B0-B̄0 is
governed by the Hamiltonian

H = M − i
Γ

2
=

(
M11 − iΓ11

2 M12 − iΓ12
2

M∗
12 − i

Γ ∗
12
2 M22 − iΓ22

2

)
(2.1)

acting on the vector
(
B0

B̄0

)
. The conditionH11 6= H22, or

< B0|H|B0 > 6= < B̄0|H|B̄0 > , implies an indirect viola-
tion of CPT invariance in the neutral B system. Following
[11] and [13], such a violation can be easily parameterized
expressing the matrix (2.1) as follows:

H = −iD + σ1E1 + σ2E2 + σ3E3 (2.2)
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with σi the Pauli matrices and D,E1, E2, E3 four complex
numbers. The correspondence between the parameters in
(2.1-2.2) is simply given by:

E1 = ReM12 − i

2
ReΓ12

E2 = −ImM12 +
i

2
ImΓ12

E3 =
1
2
(M11 −M22) − i

4
(Γ11 − Γ22) . (2.3)

CP and CPT violating effects can be parameterized [11,
13] by introducing the new complex variables E, θ, φ,
defined as:

E = (E2
1 + E2

2 + E2
3)

1/2
, E1 = E sin θ cosφ ,

E2 = E sin θ sinφ , E3 = E cos θ . (2.4)

As a matter of fact, CPT symmetry implies M11 = M22
and Γ11 = Γ22, i.e. cos θ = 0. Moreover, using the phase
convention CP |B0 >= |B̄0 >, CP invariance requires the
equality < B0|H|B̄0 >=< B̄0|H|B0 >, i.e.:

M12 − i
Γ12

2
= M∗

12 − i
Γ ∗

12

2
. (2.5)

This means Im Γ12 = Im M12 = 0, i.e. φ = 0 and cos θ =
0.

The coefficients relating the mass eigenstates of the

Hamiltonian (2.1) to the flavour eigenstates |
(−)

B0>:

|B1 >=
1

(|p1|2 + |q1|2)1/2

(
p1|B0 > +q1|B̄0 >

)
(2.6)

|B2 >=
1

(|p2|2 + |q2|2)1/2

(
p2|B0 > −q2|B̄0 >

)
(2.7)

are simply related to the parameters θ and φ by the equa-
tions

q1
p1

= eiφ tan
θ

2
,

q2
p2

= eiφ cot
θ

2
. (2.8)

Then, CPT invariance implies θ = π
2 and

q1
p1

=
q2
p2

= eiφ ; (2.9)

a violation of CPT is governed by the parameter

s = cot θ =
1
2

(
q2
p2

− q1
p1

)
e−iφ . (2.10)

Although, in principle, φ and θ are complex numbers, we
assume in the following

Im φ = 0 , Im θ = 0 , (2.11)

and therefore a real variable s, to reduce the phenomeno-
logical analysis to the effects of the variation of a single
parameter. We shall comment below on the possible effects
related to the imaginary part of s.

If at t = 0 only a B0 or B̄0 state is present, the time
evolution of the mass eigenstates |B1 > and |B2 >:

|Bn(t) >= e−i(mn−i Γn
2 )t|Bn(0) > (n = 1, 2) (2.12)

implies that

|B0(t) >= e−(im+ Γ
2 )t

[
g+(t)|B0 > +ḡ+(t)|B̄0 >

]
(2.13)

|B̄0(t) >= e−(im+ Γ
2 )t[ḡ−(t)|B0 > +g−(t)|B̄0 >] , (2.14)

where [11]

g±(t) = cos2
θ

2
e±(i∆m− ∆Γ

2 ) t
2 + sin2 θ

2
e∓(i∆m− ∆Γ

2 ) t
2

(2.15)

ḡ±(t) = sin
θ

2
cos

θ

2
[e(i∆m− ∆Γ

2 ) t
2

−e−(i∆m− ∆Γ
2 ) t

2 ] e±iφ ; (2.16)

m1(Γ1) and m2(Γ2) are the mass (width) of |B1 > and
|B2 >, respectively, and m = m1+m2

2 , ∆m = m2 − m1,
Γ = Γ1+Γ2

2 , ∆Γ = Γ1 − Γ2.
Since ∆Γ

Γ

<∼ 10−2 [14], in the following we neglect the ac-
tual value of ∆Γ .

Equations (2.13-2.16) show that the time evolution of
neutral B states is governed also by the CPT violating
parameter s, and then it is possible to define observables
sensitive to s. A bound on s can be inferred from the mass
difference B0- B̄0, using the relation

mB0 −mB̄0 =
s√

1 + s2
(m1 −m2) , (2.17)

with m1 −m2 = 3×10−13 GeV [3] the measured mass dif-
ference between B1 and B2. A value s ∼ O(10−1) implies
a relative mass difference |mB0−mB̄0 |

mBaverage
∼ O(10−15); in the

neutral kaon system the bound |mK0−mK̄0 |
mK average

≤ 9 × 10−19

[3] corresponds to s ≤ 2 × 10−4.

III Dileptons

Let us now consider the signals of a possible CPT vio-
lation in various final states, starting from the processes
where both the neutral B mesons decay via a semileptonic
transition.

The B0B̄0 wave function from Υ (4S) decays reads

|ψ(t) >=
1√
2

[|B0(k, t) > |B̄0(−k, t) > +C|B0(−k, t)

> |B̄0(k, t) >
]

(3.1)

where ±k are the meson momenta in the Υ (4S) rest frame,
and C = −1 is the charge conjugation of the B0B̄0 pair.

Let us determine the probability of opposite sign dilep-
ton production (l+X−), (l−X+), X± being a generic had-
ronic state. If t1 and t2 are the decay times of the B
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mesons with momentum k and −k, respectively, and if
P± ∓(t1, t2) is the probability for a positive (negative)
lepton at the time t1(t2), one has:

P−+(t1, t2) ∝ | < l−X+, t1; l+X−, t2|ψ > |2 (3.2)

∝ 1
2

∣∣∣∣ < l−X+, t1|HW |B0(t1) >< l+X−, t2|HW |B̄0(t2) >

− < l−X+, t1|HW |B̄0(t1) >< l+X−, t2|HW |B0(t2) >
∣∣∣∣
2

.

Since, within the Standard Model, only the transitions
B̄0 → l−X+, B0 → l+X− occur at the leading order in
the Fermi constant, the following relations can be derived:

< l+X−, t|HW |B̄0(t) > = e−(im+ Γ
2 ) t

2 ḡ−(t)
×< l+X−|HW |B0 >, (3.3)

< l−X+, t|HW |B0(t) > = e−(im+ Γ
2 ) t

2 ḡ+(t)
×< l−X+|HW |B̄0 >, (3.4)

< l−X+, t|HW |B̄0(t) > = e−(im+ Γ
2 ) t

2 g−(t)
×< l−X+|HW |B̄0 >, (3.5)

< l+X−, t|HW |B0(t) > = e−(im+ Γ
2 ) t

2 g+(t)
×< l+X−|HW |B0 >.(3.6)

Neglecting violation of CPT in the decay amplitude, we
can put:

< l+X−|HW |B0 >=< l−X+|HW |B̄0 >= Al . (3.7)

Then, keeping only terms of O(s2), the probability of pro-
duction of opposite sign dileptons is given by:

P−+(t1, t2) ∝ 1
2
e−Γ (t1+t2)(|Al|2)2|ḡ+(t1)ḡ−(t2)

−g−(t1)g+(t2)|2

=
1
2
(|Al|2)2 e

−Γ (t1+t2)

1 + s2

×[1 + 2s2 + cos∆m(t1 − t2)] . (3.8)

The production probability of equal sign dileptons can be
derived in an analogous way; for C = −1 one has

P±±(t1, t2) ∝ (|Al|2)2 e
−Γ (t1+t2)

4(1 + s2)
[1 − cos∆m(t1 − t2)] .

(3.9)
For s = 0, (3.8-3.9) reduce to well known expressions for
the production probability of lepton pairs in B0-B̄0 de-
cays. Time integration of (3.8) gives the integrated prob-
ability

P−+ ∝ (|Al|2)2
Γ 2

1
2(1 + s2)

[
1 + 2s2 +

1
1 + x2

d

]
, (3.10)

where xd =
∆m

Γ
. The quantity (|Al|2)2

Γ 2 is proportional to

the product of the semileptonic B0, B̄0 branching ratio;

the fractions n±± of equal and opposite sign dileptons
produced for each decay can be easily derived:

n−+ =
1

2(1 + s2)

[
1 + 2s2 +

1
1 + x2

d

]
, (3.11)

and

n++ = n−− =
1

4(1 + s2)
x2

d

1 + x2
d

. (3.12)

The dependence on the parameter s signals CPT viola-
tion.

A measurement of the ratio

R =
n++ + n−−

n+− =
x2

d

1 + (1 + 2s2)(1 + x2
d)

(3.13)

provides a bound on s. Moreover, a measurement of time-
dependent production, possible at an asymmetric B-facto-
ry, provides us with the fraction of opposite and equal sign
dileptons:

n−+(∆t) =
e−Γ |∆t|

2(1 + s2)
[1 + 2s2 + cos∆m∆t] (3.14)

n++(∆t) = n−−(∆t) =
e−Γ |∆t|

4(1 + s2)
[1−cos∆m∆t] . (3.15)

Then, the ratio R(∆t), analogous to (3.13), can be written
as:

R(∆t) =
n++(∆t) + n−−(∆t)

n−+(∆t)

=
1 − cos∆m∆t

1 + 2s2 + cos∆m∆t
. (3.16)

It is worth observing that other asymmetries, obtained
reconstructing the temporal sequences of production of
equal and opposite-sign dileptons:

A =
n++ − n−−

n++ + n−− , Ā =
n−+ − n+−

n−+ + n+− , (3.17)

vanish (both for positive and negative charge conjugation
of the initial B0 B̄0 states). However, this is only the case
for a real s. In general, one finds [11]:

Ā(∆t) =
n−+(∆t) − n+−(∆t)
n−+(∆t) + n+−(∆t)

= −2(Im s) sin∆m|∆t|
1 + cos∆m∆t

, (3.18)

and therefore from the asymmetry (3.18) a bound on Im s
can be derived.

It is now interesting to determine the upper bound on s
that is possible to obtain in the BaBar experiment at the
SLAC B-factory PEP II making use of dilepton events.
At PEP II N(B0B̄0) ' 1.8×107 B0B̄0 pairs are expected
per year, for a machine running at the design luminosity
[7]. Using the value of the semileptonic branching frac-
tion B(B0 → l+X−) ' 0.105, and the estimated lepton
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Fig. 1. The ratio R in (3.13) versus xd and s. The continuous
line corresponds to s = 0, the dashed-dotted line to s = 0.1,
the dashed line to s = 0.2, the dotted line to s = 0.3

tagging efficiency εtag = 0.65 [7], the number of expected
dilepton events per year is:

N++ = N−− = N(B0B̄0)[B(B0 → l+X−)]2ε2tagn
++

' 2.8 × 104 , (3.19)
N−+ = N(B0B̄0)[B(B0 → l+X−)]2ε2tagn

−+

' 2.8 × 105. (3.20)

The error on the variable R can be derived assuming a
binomial distribution for N±± and N−+. If p and 1 − p
are the probabilities of two leptons produced with opposite
and equal charges:

p = n−+ =
1

2(1 + s2)

(
1 + 2s2 +

1
1 + x2

d

)
, (3.21)

1 − p = n++ + n−− =
1

2(1 + s2)
x2

d

1 + x2
d

(3.22)

(for s2 << 1), one has that the probability distribution

P (N−+) =
(

N
N−+

)
pN−+

(1 − p)N−N−+
, (3.23)

with N = N++ +N−− +N−+, can be expressed in terms
of R in the form

P

(
N

1 +R

)
=

(
N
N

1+R

)
p

N
1+R (1 − p)N− N

1+R , (3.24)

yielding

σ2
(

N

1 +R

)
= Np(1 − p) (3.25)

0

2

4

6

          

Fig. 2. Time dependent results for R (3.16). Notations as in
Fig. 1. The expected statistical error is smaller than the size
of the dots for the different values of ∆m∆t

and finally the error σ(R):

σ(R) = (1 +R)2
√

2 N−+ N++

N3 . (3.26)

In Fig. 1 the ratio R in (3.13) is plotted as a function of
xd and s in the ranges 0.63 < xd < 0.83 and 0 < s <
0.3. In Fig. 2 we plot the time dependent ratio R(∆t) in
(3.14). The corresponding error bars have been calculated
using (3.26). For time-integrated measurements, the error
σ(R) is given by σ(R) = 9 × 10−4 for xd = 0.73, while,
considering the whole range of xd, σ(R) runs from 8×10−4

to 1 × 10−3.
These errors give an insight on the possible accuracy

that can be obtained at a B-factory such as PEP II, due
both to the machine luminosity and to the efficient lep-
ton identification. The small value of σ(R) shows that the
region of possible values of xd and s can be tightly con-
strained. The measurements of time integrated and time-
dependent dilepton production fractions allow to estab-
lish an upper bound to the parameter s. As a matter
of fact, from Fig. 2 we get that, for ∆m∆t = π

4 , the
bounds s < (5, 7, 8) × 10−2 are obtained, respectively,
within one, two and three standard deviations on R(∆t);
for ∆m∆t = π

2 and 3π
4 the bounds are s < (4, 6, 7)×10−2,

and s < (4, 5, 6) × 10−2, respectively.

IV Lepton-hadron channels

A Decay mode B → J/ψKS

Now we wish to investigate the possibility of bounding
CPT violating effects by means of nonleptonic decays of
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Fig. 3. Integrated asymmetry (4.5) for the channel B0 →
J/ψKS . The three lines correspond to the values of the β angle:
β = 18◦ (dashed-dotted line), β = 22◦ (solid line) and β = 26◦

(dashed line). Statistical errors show the minimum value of s
accessible from this mode

neutral B mesons [12] , using our parameterization of the
CPT breaking term. We consider events where one B
decays via a semileptonic transition to l±X∓, while the
other B decays into a nonleptonic state. On the experi-
mental side, the semileptonic decay can be used to tag the
flavour of the other B meson decaying into the hadronic
final state |f >.

Integrated and time-dependent CP asymmetries of the
type

A =
N(l−X+, f) −N(l+X−, f̄)
N(l−X+, f) +N(l+X−, f̄)

(4.1)

A(∆t) =
N(l−X+, f ;∆t) −N(l+X−, f̄ ;∆t)
N(l−X+, f ;∆t) +N(l+X−, f̄ ;∆t)

(4.2)

can be used to test CPT invariance. Let us consider, for

example, the hadronic decay
(−)

B0→ J/ψKS . A tree and a
penguin diagram contribute to such a process, so that we
can express the transition amplitudes in the form:

< J/ψKS |HW |B0 >= AT e
iδT eiφT +AP e

iδP eiφP (4.3)

< J/ψKS |HW |B̄0 >= AT e
iδT e−iφT +AP e

iδP e−iφP ,
(4.4)

where AT,P and φT,P are the weak amplitudes and phases
respectively, while δT,P are the strong phases. At the lead-
ing order in s the CP asymmetries (4.1) and (4.2) read
respectively

A =
x2

d

1 + x2
d

s cos 2β , (4.5)

A(∆t) = − sin 2β sin∆m∆t+ s cos 2β(1 − cos∆m∆t) ,
(4.6)

-1

-0.5

0

0.5

1

     

Fig. 4. Time dependent asymmetry (4.6) for the channel B0 →
J/ψKS . The lines correspond to the values s = 0 (solid line),
s = 0.1 (dashed-dotted line), s = 0.2 (dashed line) and s = 0.3
(dotted line). The expected statistical error for different values
of ∆m∆t is also shown

in terms of the β angle of the unitarity triangle.
The sensitivity of PEP II to a CPT violation effect in

this channel can be obtained noticing that the error on A
is given by

σ(A) = d

√
(1 +A)(1 −A)

Neff
. (4.7)

In (4.7) the effective number of events Neff is given by:
Neff = N(f)K(f, f̄)Etag, with N(f) the number of
events with a reconstructed hadronic state, K(f, f̄) =

n(f, l+X−)+n(f̄ , l−X+), n(
(−)
f , l±X∓) being the fractions

of lepton-hadron events produced in the decay of theB0B̄0

pair, Etag the total efficiency of tagging, d the dilution fac-
tor for the production of |f > states from events different

from
(−)

B0→ f decays. For the final state f = J/ψKS the
values Etag = 0.34, N(f) = 886 and d = 1 are expected
[7]. In Fig. 3 and Fig. 4 we plot integrated asymmetries for
β = 18◦, β = 22◦ and β = 26◦, and time-dependent asym-
metries for β = 22◦, with the corresponding error bars.
We notice that the maximum value of the time-dependent
asymmetry grows with s, and therefore higher order terms
in the s-expansion are needed to fulfil the bound |A| ≤ 1.

For integrated measurements at PEP II, the expected
error on A is: σ = 5.8 × 10−2, quite independent of β.
As a result, it is possible to bound s ≤ 0.21 for β = 18◦,
s ≤ 0.24 for β = 22◦ and s ≤ 0.28 for β = 26◦ within one
standard deviation.

From time-dependent asymmetries, in the PEP II ex-
perimental environment the bounds s ≤ 0.13 (0.26) (with-
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Fig. 5. Time dependent asymmetry (4.2) for the channel B0 →
D+D−. The lines correspond to the values s = 0 (solid line),
s = 0.1 (dashed-dotted line) and s = 0.2 (dashed line)

in one and two standard deviations) can be established in
correspondence to ∆m∆t = π

2 , and s ≤ 0.17 for ∆m∆t =
3π
4 .

B Other decay modes

Other hadronic decay modes, such as B → D+D− and
B → D∗+D∗−, can be used to bound CPT invariance.
To calculate the asymmetries for such final states, new
information has to be considered concerning the transition
amplitude and the final state interaction.

The transition amplitudes B → D(∗)D(∗) are governed
by the effective hamiltonian [15]

Heff (∆B = −1) =
G√
2

[
VubV

∗
uq(c1O

u
1 + c2O

u
2 )

+VcbV
∗
cq(c1O

c
1 + c2O

c
2)

−VtbV
∗
tq

6∑
i=3

ciOi

]
, (4.8)

where Vjb and V ∗
uq (j = u, c, t; q = d, s) are elements of the

Cabibbo-Kobayashi-Maskawa matrix, and ci (i = 1, ..., 6)
the Wilson coefficients at the scale µ ' mb; O

u,c
1 and Ou,c

2
are current-current operators, Oi (i = 3, .., 6) are penguin
operators.

In the vacuum saturation approximation, the decay
amplitudes can be written as

< D+D−|HW |B0 >=
G√
2

[
VcdV

∗
cba1 − VtdV

∗
tb

-1

-0.5

0

0.5

1

     

Fig. 6. Time dependent asymmetry (4.2) for the channel B0 →
D∗+D∗−. The lines correspond to the values s = 0 (solid line),
s = 0.1 (dashed-dotted line), s = 0.2 (dashed line) and s = 0.3
(dotted line)

×
(
a4 +

2a6m
2
D

(mb −mc)(mc +md)

)]

× < D+|c̄γµ(1 − γ5)d|0 >
× < D−|b̄γµ(1 − γ5)c|B0 > , (4.9)

< D∗+D∗−|HW |B0 >=
G√
2
(VcdV

∗
cba1 − VtdV

∗
tba4)

× < D∗+|c̄γµ(1 − γ5)d|0 >
× < D∗−|b̄γµ(1 − γ5)c|B0 > , (4.10)

with parameters a1,...,a6 related to the Wilson coefficients
c1,... ,c6 by the equations:

a2i−1 = c2i−1 +
c2i

Nc
, a2i = c2i +

c2i−1

Nc
(4.11)

(i = 1, 2, 3 and Nc is the number of colours).
In the NDR renormalization scheme at the next-to-

leading order, using Nc = 3 and the scale µ = mb, we get
[15]

a1 = 1.017 , a2 = 0.175 , a3 = 0.0013 ,
a4 = −0.030, a5 = −0.0037 , a6 = −0.038. (4.12)

Integrated and time-dependent asymmetries depend on
the parameters of the Cabibbo-Kobayashi-Maskawa ma-
trix and, unlike the B0 → J/ψKS mode, also on strong fi-
nal state phases. Various estimates, however, suggest that
for B transitions to charmed states such strong phases are
small [16], and therefore we neglect them in the analysis.
The asymmetry (4.2) can be computed in a straightfor-
ward way; we omit here the lengthy expression, and only
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plot in Fig. 5 and Fig. 6 the time dependent asymme-
tries for B → D+D− and B → D∗+D∗− respectively, for
β = 22◦ and the parameters of the CKM matrix ρ = 0.05,
η = 0.39, γ = 83◦; the corresponding error bars are also
depicted in the figures.

The analysis shows that a sensible bound on s can be
obtained from these decay channels only if tagging and re-
construction efficiencies at PEP II improve with respect to
the estimates quoted in [7]. For instance, an improvement
by a factor of two will allow to put the bounds s ≤ 0.18
(from B → DD) and s ≤ 0.22 (from B → D∗D∗) in
correspondence to ∆m∆t = π

2 .
As for the hadronic channels B0 → π+π− and B0 →

ρ±π∓, the CP asymmetries depend on the strong phases
due to the hadron rescattering in the final state. In any
case, we found that the statistics expected for such de-
cay modes does not allow to sensitively bound the CPT
violating parameter s.

V Testing direct CPT violation effects

So far we analyzed indirect CPT violation effects. It is
also possible to consider observables which are sensitive
to direct violation effects. One of them is the asymme-
try between the partial widths of charged B mesons, re-
lated to a CPT violating term in the transition amplitudes
< f |HW |B+ >6=< f̄ |HW |B− >:

A =
Γ (B+ → f) − Γ (B− → f̄)
Γ (B+ → f) + Γ (B− → f̄)

. (5.1)

We do not parameterize this kind of violation, but just
compute the expected error on the asymmetry (5.1). For
the decay mode B+ → D̄0l+νl, N = 2.9 × 105 identified
events are expected per year [7], so that the estimated
error on (5.1) is σ = 7.9 × 10−3; for B+ → D̄0∗

l+νl, the
number of expected events per year is N = 3.9 × 106, and
the estimated error is σ = 5.1 × 10−3.

VI Conclusions

We investigated the possibility of testing CPT symmetry
in the neutral B meson system, considering the experi-
mental environment provided by the B-factory PEP II.
We found that dileptons and lepton-hadron events, with
the hadronic decay B0 → J/ψKS , can be used to con-
strain the CPT violating parameter s.

In particular, from equal and opposite sign dilepton
production, one can derive the bound s ≤ O(10−2), which
corresponds to a relative mass difference |mB0−mB̄0 |

mBaverage
≤

O(10−16).
As for the hadronic decay B0 → J/ψKS , the sensitiv-

ity of PEP II is up to s ' O(10−1). Our analysis, though
being quite different, confirms the estimate in [12] about
the order of CPT violating effects that can be constrained
at PEP II.

Other channels, such as B0 → D+D− and B0 →
D∗+D∗−, might allow a sensible bounding of s if tagging
and reconstruction efficiencies improve at least by a factor
of two with respect to the current expectations. Charm-
less decays of the type B0 → π+π−, B0 → ρ±π∓, turn
out to be unsuitable for testing CPT .
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Appendix A: Case C = +1

For the sake of completeness, we report the relevant for-
mulae corresponding to a C even B0-B̄0 state:

P−+
+ ∝ 1

4
(|Al|2)2 e

−Γ (t1+t2)

4(1 + s2)2
{1 + cos∆m(t1 + t2)

+s2[1 + 2 cos∆mt1 + 2 cos∆mt2
− cos∆m(t1 − t2)]} . (A1)

P±±
+ (t1, t2) ∝ (|Al|2)2 e

−Γ (t1+t2)

4(1 + s2)2
{1 − cos∆m(t1 + t2)

+s2[3 − 2 cos∆mt1 − 2 cos∆mt2
+ cos∆m(t1 + t2)]} . (A2)

n−+
+ =

1
2(1 + s2)2

[
x4

d + x2
d + 2

(1 + x2
d)2

+ s2
4 + x2

d

1 + x2
d

]
(A3)

n++
+ = n−−

+ =
1

4(1 + s2)

[
x4

d + 3x2
d

(1 + xd)2
+ s2

3x2
d

1 + x2
d

]
(A4)

n−+
+ (∆t) =

e−Γ |∆t|

2(1 + s2)2

{
2 + x2

d

1 + x2
d

+ s2

[
1 − cos∆m∆t

+
2√

1 + x2
d/4

(sin(∆m|∆t| − α)

+ cos(∆m|∆t| − α)

]}
(A5)

n++
+ (∆t) =

e−Γ |∆t|

4(1 + s2)2

{
x2

d

1 + x2
d

+ s2

[
3 + cos∆m∆t

+
2√

1 + x2
d/4

(sin(∆m|∆t| − α)

+ cos(∆m|∆t| − α))

]}
, (A6)

with α = arctan xd

2 .
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